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Abstract 

 
As an important technology of the internetwork, wireless sensor network technique plays an 
important role in indoor localization. Non-line-of-sight (NLOS) problem has a large effect on 
indoor location accuracy. A location algorithm based on improved particle filter and directional 
probabilistic data association (IPF-DPDA) for WSN is proposed to solve NLOS issue in this 
paper. Firstly, the improved particle filter is proposed to reduce error of measuring distance. 
Then the hypothesis test is used to detect whether measurements are in LOS situations or 
NLOS situations for N different groups. When there are measurements in the validation gate, 
the corresponding association probabilities are applied to weight retained position estimate to 
gain final location estimation. We have improved the traditional data association and added 
directional information on the original basis. If the validation gate has no measured value, we 
make use of the Kalman prediction value to renew. Finally, simulation and experimental results 
show that compared with existing methods, the IPF-DPDA performance better. 
 

 
Keywords: Wireless Sensor Network, Indoor Localization, NLOS, Improved Particle Filter, 
Directional Probabilistic Data Association. 
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1. Introduction 

Wireless sensor network (WSN) is an important technology of the Internet, which is more 
and more widely used in daily life [1]. Indoor positioning is becoming more and more 
important in WSN. Indoor localization technology based on distance general uses time 
difference of arrival (TDOA), received signal strength (RSS), time of arrival (TOA), angle of 
arrival (AOA), [2] [3] [4], etc.  

In this paper, the Euclidean distance measurements are obtained between mobile node (MN) 
and beacon nodes (BNs) through TOA method. In a NLOS case, by reason of the presence of 
barriers, the measured time will be longer than in LOS. This will lead to measured distance to 
be larger than Euclidean distance, which is called NLOS error [5]. In practice, all kinds of 
indoor objects can be regarded as obstacles. Therefore, the designed algorithm is necessary to 
reduce the NLOS errors. 

There are some traditional mitigate NLOS errors algorithms, Particle Filter (PF), Average 
Filter (AF), Gaussian Filter (GF), Kalman Filter (KF), Extended Kalman Filter (EKF) and 
Unscented Kalman Filter (UKF) so on. These algorithms can’t achieve high positioning 
accuracy. PF [6] uses some random sampling points, namely particles, to describe the 
probability of target location. Then, through the weighted value of each particle, the estimated 
value of the MN is obtained.  

In LOS case, EKF algorithm [7] has high positioning exactitude, but the positioning 
exactitude is dramatically reduced when there is NLOS interference. The interactive multi-
model (IMM) algorithm has strong robustness, so many new algorithms are derived from the 
IMM algorithm to solve the problem of NLOS interference [8] [9] [10]. The disadvantage of 
IMM algorithm is that the statistical error needs to be known in advance.  

REKF algorithm is a semi-parametric estimation algorithm based on TOA estimation [11], 
which has certain robustness. The REKF algorithm uses the Huber robust M estimator [12] to 
generate a linear regression model to process the estimated position, and to find the estimated 
value that meets the preset accuracy through multiple iterations, thereby mitigating the 
influence of NLOS. Replace NLOS filter in IMM algorithm with REKF, which is RIMM 
algorithm [13]. Although the statistical information of NLOS errors of RIMM does not need 
to be known in advance, 𝑐𝑐1 and 𝑐𝑐2 are set by ourselves. The MPDA [14] performs well in 
LOS. However, it is often easy to lose the target when the NLOS probability increases.  

Due to the separate operation of each BN in the original PF, there is no connection between 
the various BNs. We hope to improve the existing PF to enable BNs to work together, thereby 
further reducing the impact of NLOS. Traditional PDA filters only use distance information 
when calculating correlation probabilities, and we found that direction is also an important 
factor. Therefore, we attempted to add direction information to the data association. In this 
paper, an algorithm IPF-DPDA is proposed for the above problems, this paper mainly makes 
the following contributions: 

1) We have improved the traditional data association and added directional information on 
the original basis. The DPDA uses Mahalanobis distance and trajectory direction to compute 
the association probabilities to obtain more accurate location estimate.  

2) Parallel with the previous particle filter BNs working alone, the improved particle filter 
BNs work together to alleviate negative impact of NLOS error. Improved particle filter 
significantly reduces the measurement distance error caused by NLOS. 

3) The IPF-DPDA does not need to know the prior knowledge of NLOS errors in advance. 
Nevertheless, simulation and experimental results display that IPF-DPDA is better than those 
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algorithms that need to know a priori information and performs better when the NLOS errors 
follow different distributions. 

The whole paper is arranged as follows. Section II describes the related work. Section III 
introduces proposed algorithm. Simulations and experiment are described in Section IV, and 
Section V gives the conclusion. 

2. Related Works 
Many scholars have done research in the field of indoor location for the sake of improving 
positioning accuracy. In [15], Zhou proposed a method of Asymptotic Relative Efficiency 
(ARE), and based on this idea, the new hybrid hypothesis test is designed, which is applied to 
raise the accuracy of Wi-Fi indoor location. Compared to traditional WIFI positioning, the 
author not only considers the diversity of signal distribution but also considers the error of 
RSS measurement values, thus improving the positioning accuracy. In [16], Generative 
countermeasure network is proposed for RSSI data enhancement. The network uses a small 
part of real labeled data to generate false RSSI data. This algorithm also improves the location 
accuracy of indoor positioning. Compared to traditional methods, this method reduces the cost 
of data collection and reduces training data. A new ultrasonic signal classification and 
suppression algorithm is proposed for NLOS [17]. The algorithm processes the amplitude and 
residual of the received signal, and uses these two characteristics to sort and suppress NLOS. 
This algorithm has great advantages compared to other algorithms in classifying narrowband 
signals containing severe multipath effects. In [18], Zhou studied the location error based on 
hybrid fingerprint. The final results show that using the relevance between different forms of 
fingerprints can significantly mitigate positioning errors. When the number of fingerprints 
decreases, the location errors will increase. This is the drawback of this algorithm.  

Combinational localization algorithm is also a current research trend [19-23]. In [19], A 
Pedestrian Dead Reckoning (PDR) and TDOA idea are integrated for indoor position. Launch 
a wall mirror of a NLOS BSs to generate a virtual base station (VBS), which is considered 
LOS BSs. After completing this process, more LOS BSs will participate in positioning. 
Compared to traditional algorithms, this algorithm solves the problem of unknown regions 
being unable to locate. In [20], Chang combined RSS and AOA methods to solve the 
positioning of mobile node in 3D. Simulations demonstrate their algorithm can achieve great 
performance in different situations. The main advantage of this algorithm is that it can work 
effectively regardless of whether the target's transmission power is known or unknown, which 
reflects the universality of the algorithm. In [21], identifies and selects the LOS and NLOS 
measurements which have better channel condition and geometric dilution of precision 
(GDOP) that derived by the hybrid Round-Trip Time (RTT), TDOA and direction of arrival 
(DOA). More measurement information fusion can reduce positioning errors, which is also a 
current research trend. In [22], an indoor location method combining Wi-Fi RTT and PDR is 
proposed. For the sake of increasing positioning accuracy of Wi-Fi RTT, an adaptive filtering 
system is formed by combining multiple EKF with a new anomaly test means. Tomic 
transformed the location issue into a generalized trust region subproblem based on TOA and 
RSS [23], and then solves it by bisection program. Because the difficulty of the research 
content, converting to a generalized trust domain is only an approximate transformation, which 
may affect the accuracy of the algorithm. 
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3. Proposed Method 

3.1 Signal Model 
In the two-dimensional positioning area, it has 𝑀𝑀 BNs around MN. There may or may not be 
obstacles between MN and BNs. The state vector of MN is 𝑋𝑋(𝑙𝑙) = [𝑥𝑥(𝑙𝑙)  𝑦𝑦(𝑙𝑙)  𝑥̇𝑥(𝑙𝑙)  𝑦̇𝑦(𝑙𝑙) ]𝑇𝑇, 
�𝑥𝑥(𝑙𝑙),𝑦𝑦(𝑙𝑙)�  denotes the position of the MN and �𝑥̇𝑥(𝑙𝑙), 𝑦̇𝑦(𝑙𝑙)�  denotes the velocity of MN. 
Then the state equation is modeled as: 
 ( ) = ( -1) +X l FX l w  (1) 

where, 𝐹𝐹 = �

1 0 𝑇𝑇𝑆𝑆 0
0 1 0 𝑇𝑇𝑆𝑆
0 0 1 0
0 0 0 1

�  denotes the state transition matrix of MN, and 𝑤𝑤  denotes 

measurement noise, 𝑇𝑇𝑆𝑆 is sampling interval. We suppose 𝑀𝑀 BNs to detect the location of 
MN. We let 𝑑𝑑𝑖𝑖(𝑙𝑙) = [𝑑𝑑1(𝑙𝑙),𝑑𝑑2(𝑙𝑙), …𝑑𝑑𝑀𝑀(𝑙𝑙)] express that the measured distance is between 𝑀𝑀 
BNs and MN: 
 ( ) ( ( )) , 1,..., ; 1,...,id l h X l n l L i M= + = =   (2) 
where, ℎ�𝑋𝑋(𝑙𝑙)� = [ℎ1�𝑋𝑋(𝑙𝑙)�,ℎ2�𝑋𝑋(𝑙𝑙)�, … , ℎ𝑀𝑀�𝑋𝑋(𝑙𝑙)�]𝑇𝑇  indicate the Euclidean distance 
between MN and the 𝑚𝑚 − 𝑡𝑡ℎ BN with the position (𝑥𝑥𝑏𝑏𝑏𝑏,𝑚𝑚,𝑦𝑦𝑏𝑏𝑏𝑏,𝑚𝑚) is: 
 2 2

,m ,( ( )) = ( ( ) - ) + ( ( ) - ) , = 1,...,m bn bn mh X l x l x y l y m M   (3) 
The noise n is defined as: 

 
 LOS condition

= {         
+    NLOS condition
LOS

LOS NLOS

n
n

n n
  (4) 

where, 𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿  follows the Gaussian distribution 𝑛𝑛𝐿𝐿𝐿𝐿𝐿𝐿~𝑁𝑁(0, 12)  The 𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  represents the 
NLOS error, as the environment changes, it may follow different distributions. 

3.2 General Concept 
The flow-process diagram of IPF-DPDA is showed in Fig. 1. We take for that incipient value 
and covariance of state estimation are computed ahead of time in this essay. We make use of 
M BNs and P particles to locate MN. At time 𝑙𝑙, the measured distance between BN and MN 
is recorded as 𝑑𝑑𝑖𝑖𝑙𝑙. The distance between the 𝑝𝑝 − 𝑡𝑡h particle and the 𝑖𝑖 − 𝑡𝑡h BN is recorded 
as 𝑑𝑑𝑖𝑖,𝑝𝑝𝑙𝑙  . Then calculate the residuals of 𝑑𝑑𝑖𝑖𝑙𝑙  and 𝑑𝑑𝑖𝑖,𝑝𝑝𝑙𝑙  . Select P particles according to the 
obtained residuals. The first choice is to calculate the sum of residuals from each particle to 
each BN, and then normalize it. Particles with normalized weight greater than the average 
weight are retained. The second choice is to calculate the residual of the remaining particles 
again. If it is not less than the threshold (LOS) of the calculated, the particles will be retained, 
otherwise they will be discarded. Distance selection: carry out residual processing between the 
estimated distance and the measured distance. If the residual outweigh the average distance 
residual (regarded as NLOS), measured distance is updated with the estimated distance 
obtained from remaining particles. On the contrary, the distance is still measured.  

Then, using the grouping idea and the least-squares method, 𝐶𝐶𝑀𝑀3   measurements are 
obtained, 𝐶𝐶𝑀𝑀3 = 𝑁𝑁. These 𝑁𝑁 different position estimates are detected through the validation 
gate, and what inside validation gate is correct location estimated. Furthermore, those left 
outside the validation gate are discarded. If there are measured values inside validation gate, 
the corresponding association probabilities are applied to weight retained position estimate to 
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obtain final position estimation. If the number of inside validation gate is 0, update with 
predicted state estimate. 

 
Fig. 1. The flowchart of IPF-DPDA 

3.3 Improved Particle Filter 
1) Particles Weighting: The weight of particles is related to the final distance calculation and 
update. The Weighting Particles has three steps: 

Firstly, at time 𝑙𝑙, the distance difference between the 𝑝𝑝 − 𝑡𝑡h particle and the MN to the 
𝑖𝑖 − 𝑡𝑡h BN is calculated. The distance difference can be represented as 𝑟𝑟𝑟𝑟𝑠𝑠𝑖𝑖,𝑝𝑝𝑙𝑙 . The specific 
expression is as follows: 

 , ,| |, 1,... , 1,...,l l l
i p i p ires d d i M p P= − = =

  (5) 
Secondly, we compute the total residual from the 𝑝𝑝 − 𝑡𝑡h particle to each BN, which can 

be represented as 𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑙𝑙 . The specific expression is as follows: 

 ,
1
| |, 1,...,

M
l l l
p i p i

i
res d d p P

=

= − =∑   (6) 

Finally, the reciprocal of the total of the residuals of the 𝑝𝑝 − 𝑡𝑡h particle is obtained. The 
specific expression is as follows: 
 1 /l l

p pW res=   (7) 
2) First Selection: We can know that when the particle is closer to MN,  𝑟𝑟𝑟𝑟𝑟𝑟𝑝𝑝𝑙𝑙  is smaller 

and 𝑊𝑊𝑝𝑝
𝑙𝑙  is larger. When making the first selection, the particles with greater weight are 

retained. 

 
0

1

1
1

: W / , 1,...,

: W / , 1,...,

P
l l
j i

i
P

l l
j i

i

H W P j P

H W P j P

=

=

≥ =

< =

∑

∑
  (8) 

If 𝐻𝐻1 is false, the 𝑗𝑗 − 𝑡𝑡h particle is retained. Otherwise, the 𝑗𝑗 − 𝑡𝑡h particle is discarded. 
We assume that after the first selection, S particles are retained. However, if multiple BNs 
misjudge the particles, the particles can also be selected for the first time. Therefore we make 
a second selection. 

3) Second Selection: We can use the residuals of the first step to approximate the probability 
of NLOS error. 
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0 ,

1

1 ,
1

: / * , 1,..., ; 1,...,

: / * , 1,..., ; 1,...,

p
l l
i j p

p

p
l l
i j p

p

H res res M P i M j P

H res res M P i M j P

=

=

≥ = =

< = =

∑

∑
  (9) 

We define the starting value of 𝑚𝑚  as 0. If 0H   holds true, then 𝑚𝑚  plus one, the 
cumulative value of  𝑚𝑚 is obtained at last. Finally, the percentage of the value of 𝑚𝑚 in the 
total is the probability of NLOS, which is recorded as 𝜆𝜆.  
 / *m P Mλ =   (10) 

So, there are approximately 𝑀𝑀 ∗ (1 − 𝜆𝜆) BNs are in LOS. 
 * (1 )thr M λ= −   (11) 

We use the particles left by the first selection to make the second selection. The second 
selection avoids possible errors in the first selection. The specific explanation is as follows: 

 
0 ,

1

1 ,
1

: / * , 1,..., ; 1,...,

: / * , 1,..., ; 1,...,

p
l l
i j p

p

p
l l
i j p

p

H res res P M i M j S

H res res P M i M j S

=

=

≤ = =

> = =

∑

∑
  (12) 

We define the starting value of 𝑛𝑛  as 0. Calculate whether the residual from the 𝑗𝑗 − 𝑡𝑡 h 
particle to 𝑀𝑀 BNs meets 𝐻𝐻0  .If 0H  holds true, then 𝑛𝑛 plus one, the cumulative value of n 
is obtained at last. If 𝑛𝑛 ≥ 𝑡𝑡ℎ𝑟𝑟, particle reserved, otherwise, particle discard. After calculating 
the 𝑗𝑗 − 𝑡𝑡h particle, redefine 𝑛𝑛 as 0 and continue to calculate the next particle. Repeat this 
process until all saved particles are calculated for the first time. 

When the two choices are completed, the algorithm uses the retained particles to calculate 
the distance to each BN. If the second selection does not leave any particles. Then, we select 
particles again by reducing the threshold by 1. Suppose 𝑈𝑈 particles are retained after two 
selections. 

4) Distance Update: We normalize weight of the remaining 𝑈𝑈  particles, after 
normalization, weight of the 𝑝𝑝 − 𝑡𝑡h particle is M𝑊𝑊𝑝𝑝

𝑘𝑘 at time 𝑙𝑙. The estimated distance 𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑙𝑙 
between MN and 𝑖𝑖 − 𝑡𝑡h BN is fitted by weight of the reserved particle and the distance to the 
𝑖𝑖 − 𝑡𝑡h BN.  

 ,
1

* , 1,...,
U

l l l
i p i p

p
dis MW d i M

=

= =∑   (13) 

After obtaining the estimated distance, we use the actual measured distance and estimated 
distance to calculate the residual and average residual as follows: 
 1 | |, 1,...,l l l

i i ires dis d i M= − =   (14) 
We apply the acquired distance residuals to judge whether BN is in LOS relative to MN. It 

should be emphasized here that the 𝑖𝑖 − 𝑡𝑡h residual at this time is greater than the average 
residuals this time. If this condition is met, 𝑑𝑑𝑖𝑖𝑙𝑙 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑙𝑙. That is the estimated distance obtained 
by the improved particle filter is be applied to update measured distance. Otherwise, the 
measured distance remains unchanged. The reason for this is to avoid the measurement 
distance being incorrectly updated. 

5) Particle Copy and Movement: After the distance update is complete, the particles 
retained after two selections will be used in the next distance update. We constructed a 
replication layer for this purpose. The length of each layer is weight value of the particles, and 
total length is 1. We set layer 𝐿𝐿 as follows:  
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1

1 1 2
1

(0, , ,..., ,1)
L

l l l l
i

i
L MW MW MW MW

−

=

= + ∑  (15) 

Then generate a random number between 0 and 1, we set the generated random number as 
𝑟𝑟. On which layer is the random number located, the corresponding particle is copied once, 𝑃𝑃 
times in total. This method ensures that the larger weight, the greater probability of particles 
will be copied. 

The resulting new particles move in a small range, preventing these particles from 
concentrating in one area. The moved particles are used for the next distance update. The 
following equation represents the movement of particles: 

 
 1 1 2( , ) ( , ) (0, )l l l l

p p p p pX Y X Y N σ+ + = +   (16) 

3.4 Grouping and Positioning 
We use LS method to estimate the position of MN, and estimate one position coordinate every 
three distance measurements. We assume the position of MN is(𝑥𝑥(𝑙𝑙),𝑦𝑦(𝑙𝑙))  , There is the 
following relation between BNs and MN: 

 

2 2

2 2

2
1 1 1

2

( ( )) ( ( )) ( ( ))

( ( )) ( ( )) ( ( ))M M M

x x l y y l d l

x x l y y l d l

 − + − =




− + − =


  (17) 

Equation (17) can be represented by matrix AP = B. 

 

1 2 1 2

1 3 1 3

1 1

2 2 2 2 2 2
2 1 2 2 1 1

2 2 2 2 2 2
3 1 3 3 1 1

2 2 2 2 2 2
1 1 1

( ) , ( )
( ) , ( ) ( )

2
( )

( ) , ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

M M

M M M

x x y y
x x y y x l

A
y l

x x y y

d l d l x y x y
d l d l x y x y

B

d l d l x y x y

− − 
 − −   =     
 − − 

 − − + + +
 − − + + + =
 
 

− − + + +  





     P=

  (18) 

At time 𝑙𝑙 , the estimated position coordinates can be derived from the above equation as 
follows: 
 -1( [ ( ), ( )] ( )T T Tz l x l y l A A A B= =）   (19) 

So total estimated position coordinates are  𝑧𝑧𝑛𝑛(𝑙𝑙),𝑛𝑛 = 1, . . .𝑁𝑁. Then we use the Gauss 
Newton algorithm [24] to iteratively discover minimum value of quadratic cost function, in 
which the nonlinear ℎ(·) is approximated by the first-order Taylor series.  

 
1

, 1 , , , , ,( ( ) ( )) * ( )( ( )),
1,2,...,

T
n s n s n n s n n s n n s n n sz z H z H z H z d h z

n N

−
+ = + −

=                                
  (20) 

where 𝑠𝑠 is the iteration index, 𝑠𝑠 plus one for each iteration. ℎ𝑛𝑛�𝑧𝑧𝑛𝑛,𝑠𝑠� represents in subgroup 
𝑛𝑛 the Euclidean distances between the three corresponding BSs and 𝑧𝑧𝑛𝑛,𝑠𝑠. The Jacobian matrix 
𝐻𝐻𝑛𝑛(𝑧𝑧𝑛𝑛) is defined as: 

 ,
([ , ] )(z )
[ , ]

T
n

n n x x y yT

h x yH
x y = =

∂
=

∂
  (21) 
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The iterations are repeated until between 𝑧𝑧𝑛𝑛,𝑠𝑠  and  𝑧𝑧𝑛𝑛,𝑠𝑠+1  is smaller than a certain 
threshold and when iteration stops the value of  𝑠𝑠 is less than 7. Finally, let 𝑧𝑧𝑛𝑛,𝑠𝑠+1 be the final 
position estimate. 

3.5 Algorithm 
1) Kalman Filter Prediction: we assume that initial value 𝑋𝑋�(0|0)  and covariance of state 
estimation 𝑃𝑃�(0|0) are computed ahead of time. The prediction state and covariance matrix 
estimation are obtained by KF: 

 ( | 1) ( 1| 1)X l l FX l l
∧ ∧

− = − −
     

  (22) 
 ( | 1) ( 1| 1) T TP l l FP l l F CQC− = − − +   (23) 

 ( | 1) ( | 1)z l l B X l l
∧ ∧

− = −
 

  (24) 

where 𝐵𝐵 = �1 0 0 0
0 1 0 0� ,𝐶𝐶 =

⎣
⎢
⎢
⎡𝑇𝑇𝑆𝑆

2/2 0
0 𝑇𝑇𝑆𝑆2/2
𝑇𝑇𝑆𝑆 0
0 𝑇𝑇𝑆𝑆 ⎦

⎥
⎥
⎤
  ,𝑄𝑄 = 𝐼𝐼2 , and 𝑧𝑧

∧
(𝑙𝑙|𝑙𝑙 − 1)  represents the 

predicted coordinates of MN. 
2) NLOS Detection: First, we get the difference between 𝑁𝑁 measurements and predicted 

values. 

 ( ) ( ) ( | 1), 1,...,n nv l z l z l l n N
∧

= − − =   (25) 
Then, we judge whether the 𝑁𝑁 position estimation is in LOS or NLOS. If there are no 

NLOS errors, then there are: 
 ( ) (0, ( )), 1,...,n nv l N S l n N=   (26) 
where,𝑆𝑆𝑛𝑛(𝑙𝑙)  is innovation covariance matrix of the 𝑛𝑛 − 𝑡𝑡ℎ  subgroup, calculated by the 
following equation: 
 2 1( ) ( | 1) ( ( ) ( ))T T

n L n n n nS l BP l l B H z H zσ −= − +   (27) 
We can calculate the area of the validation gate through the innovation covariance: 

 0.5( ) | ( ) |n nV l S lγπ=   (28) 
To test (26), we define 𝑁𝑁 hypotheses and another 𝑁𝑁 alternative hypotheses: 

 0,

1, 0,

: ( ) (0, ( ), 1,...,
: not 1,...,

n n n

n n

v l N S l n N
n N

ζ

ζ ζ

=

=

   
  ,  

  (29) 

If  𝜁𝜁0,𝑛𝑛 is true, BNs of the 𝑛𝑛 − 𝑡𝑡ℎ subgroups are in LOS. Otherwise, the BNs are in NLOS. 
To detect 𝑧𝑧𝑛𝑛(𝑙𝑙) whether is in the LOS condition, that is, whether it's inside validation gate. 
We can compare test statistic 𝑇𝑇𝑛𝑛(𝑙𝑙)  with threshold of the validation gate γ to judge the 
position estimation 𝑧𝑧𝑛𝑛(𝑙𝑙)  Whether is in LOS or NLOS condition. 𝑇𝑇𝑛𝑛(𝑙𝑙)  is calculated as 
follows: 
 1( ) ( ) ( ) ( )T

n n n nT l v l S l v l−=   (30) 
If 𝑇𝑇𝑛𝑛(𝑙𝑙) is smaller than 𝛾𝛾, 𝑧𝑧𝑛𝑛(𝑙𝑙) is in LOS, 𝑧𝑧𝑛𝑛(𝑙𝑙) is inside validation gate,  𝜁𝜁0,𝑛𝑛 is true. 

Otherwise, 𝜁𝜁1,𝑛𝑛 holds true. 𝛾𝛾 is associated with the threshold probability 𝑃𝑃𝐺𝐺, 𝑃𝑃𝐺𝐺 means the 
probability of a measurement from LOS BNs falls in the validation gate. The relationship 
between the two is as follows: 

 2 2

0

( ) 1G FAf x dx P P
χ

γ

= = −∫ （ ）
   (31) 
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where 𝑓𝑓𝜒𝜒2(2)(·) indicates the probability density function of chi- square distribution with two 
degrees of freedom. Due to the complexity of the indoor environment, it is impossible for us 
to know in advance the NLOS situation in this indoor environment. Therefore, we chose a 
suitable empirical 𝑃𝑃𝐺𝐺 value [14]. When 𝑃𝑃𝐺𝐺 is known, the chi-square distribution table can 
get value of 𝛾𝛾 .  

We ruled out 𝑧𝑧𝑛𝑛(𝑙𝑙) outside the validation gate and count number that in the validation 
gate, record it as 𝑁𝑁𝑣𝑣(𝑙𝑙).  

3) Data Association and Update: We set up following associated events according to the 
method of [25]: 
      𝜃𝜃𝑞𝑞(𝑙𝑙) : {  𝑧𝑧𝑞𝑞(𝑙𝑙)  is depend on the LOS BSs with the smallest error covariance, 𝑞𝑞 =
1, … ,𝑁𝑁𝑉𝑉(𝑙𝑙)}. 
      𝜃𝜃0(𝑙𝑙): {none of the location estimations 𝑧𝑧𝑞𝑞(𝑙𝑙) originates from the LOS BNs}. 

The associated probabilities are: 
 1( ) Pr{ ( ) | } Pr{ ( ) | ( ), ( ), }. 1,..., ( )l l

q q q V Vl l Z l Z l N l Z q N lβ θ θ −= = =   (32) 

where 𝑍𝑍(𝑙𝑙) = {𝑍𝑍𝑞𝑞(𝑙𝑙)}𝑞𝑞=1
𝑁𝑁𝑉𝑉(𝑙𝑙)and 𝑍𝑍𝑙𝑙is the cumulative set of the location estimated. 

Since Bayesian formula is the basis of association probability calculation, assuming that 
the innovations 𝑣𝑣𝑞𝑞(𝑙𝑙),𝑞𝑞 = 1, . . . ,𝑁𝑁𝑉𝑉(𝑙𝑙) are mutually independence, then (32) is: 

 1 11( ) [ ( ) | ( ), ( ), ] Pr{ ( ) | ( ), }, 0,1,..., ( )l l
q q V q V Vl f Z l l N l Z l N l Z q N l

c
β θ θ− −= × =   (33) 

where 𝑐𝑐 and 𝑓𝑓(·) represent normalization factor and joint probability density function for 
the location estimated, respectively. 

We assume that the probability density functions of correct location estimation and 
incorrect location estimation obey Gaussian distribution and uniform distribution respectively. 
The probability density functions for correct and incorrect location estimation are as follows: 

 1 1[ ( ) | ( ), ( ), ] ( ( ); ( | 1), ( ))l
q q V G q qf z l l N l Z P N z l z l l S lθ

∧
− −= −   (34) 

 1 ( ( );0, ( ))G q qP N v l S l−=   (35) 

 

1

1
0.5

1exp{ ( ) ( ) ( )}
2
2 | ( ) |

T
q q q

G
q

v l S l v l
P

S lπ

−

−
−

=   (36) 

where |𝑆𝑆𝑞𝑞(𝑙𝑙)| indicates the determinant of matrix 𝑆𝑆𝑞𝑞(𝑙𝑙).  
 1 1[z ( ) | ( ), ( ),Z ] ( )l

q q V qf l l N l V lθ − −=   (37) 
where 𝑉𝑉𝑞𝑞(𝑙𝑙) is area of the validation gate (28) of the 𝑁𝑁𝑉𝑉(𝑙𝑙) accepted hypothesis. 

The prior probabilities in (33) are: 

 
1

1

Pr{ ( ) | ( ),Z } , 1,..., ( )
( )

Pr{ ( ) | ( ),Z } 1 , 0

l d G
q V V

V
l

q V d G

P Pl N l q N l
N l

l N l P P q

θ

θ

−

−

= =

= − =
  (38) 

Where 𝑃𝑃𝑑𝑑 represents the detection probability.  
It can be obtained from (36) and (37), the joint probability density function of correct and 

incorrect location estimation are: 

 
( )

( )
1

1

( ( );0, ( ))
[ ( ) | ( ), ( ), ] , 1,..., ( )

VN l
q ql

q V V
i i q i G

N v l S l
f Z l l N l Z q N l

V l P
θ −

= ≠

= =∏
 

  (39) 
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( )

1 1

1

[ ( ) | ( ), ( ), ] ( ), 0
VN l

l
q V i

i

f Z l l N l Z V l qθ − −

=

= =∏
 

  (40) 

Finally, we get the association probabilities as follows: 

 
( )

( )

( )
' 1

1,

( )
' 1

0
1

( ( );0, ( ))
( ) ( ), 1,..., ( )

( )

(1 ) ( ), 0

V

V

N l
q q d G

q i V
i i qG V

N l

d G i
i

N v l S l P Pl V l q N l
P N l

l P P V l q

β

β

−

= ≠

−

=

= =

= − =

∏

∏

 

 

  (41) 

When we study indoor location, we find that MN direction is also a crucial information. 
For us, it is a kind of visual data [26]. It can be applied to data association to increase the 
accuracy of positioning. In order to add direction information, the introduction of pseudo 
direction is very necessary, because direction information can't be easily obtained in distance-
based positioning. The pseudo direction connects the verified measurement position and the 
predicted position at current time with estimated position at previous time, as shown in Fig. 2. 
𝑧𝑧
∧

(𝑙𝑙|𝑙𝑙 − 1) is the predicted state value of the target trajectory at time 𝑙𝑙, and 𝑧𝑧
∧

(𝑙𝑙 − 1) is the 
estimated position value at time 𝑙𝑙 -1. We use  𝛥𝛥𝑞𝑞  to indicate the direction difference. The 
expression is as follows: 
 | |, 1,..., ( )q q Vq N lγ γ∆ = − =   (42) 
where  𝛾𝛾𝑞𝑞 represents the included angle between vector orientation and horizontal orientation 
of the 𝑞𝑞 − 𝑡𝑡ℎ  position estimation, 𝛾𝛾  indicates the angle between vector orientation and 
horizontal orientation of the state prediction value. 
 

 
Fig. 2. Illustration of concept of pseudo direction 

 
We use the angle difference between 𝛾𝛾  and  𝛾𝛾𝑞𝑞  to decide orientation weight. When 

Gaussian weight𝑒𝑒𝑒𝑒𝑒𝑒( − 𝛥𝛥𝑇𝑇𝛿𝛿𝜙𝜙
−1𝛥𝛥/2)is applied, it is multiplied by the association probability 

of PDA. In the exponential the parameter 𝛿𝛿𝛷𝛷  used that is the variance of direction of MN. 
Define the direction of MN and the speed as follows: 

 1 ( )tan ( ),
(

x l

y l
φ −=





）
  (43) 

 2 2( ) ( ) ( )v l x l y l= +
 

  (44) 
We use the linearization method to calculate the first and second moments, and ignore the 

higher-order terms.  
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( )
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( )

( ) ( ) ( ) ( ) ( )2 2( , , )x l y l x l y l x l y l
x l y l

φ φφ ∂ ∂
∆ = ∆ + ∆ +Ο ∆ ∆ ∆ ∆

∂ ∂

     

 

  (45) 

By differentiating (45), we get 

 
( ) ( )

2 2

( ) ( ),
( ) ( )
y l x l

v l v lx l y l

φ φ∂ ∂
= =

∂ ∂

 

 

   -   (46)  

And then, 

 ( ) ( )2 2

( ) ( )
( ) ( )
y l x lx l y l

v l v l
φ∆ = ∆ ∆

 

 

-   (47) 

Then calculate the expectation and the variance from (47):   

 
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

2

2 22 2 4

( ) ( )

1{ } [ ( ) { } ( ) { }] 0,
( )
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v l

E y l P x l y l P x l P v lφ

φ

φ δ

∆ = ∆ − ∆ =

∆ = = − +
 

 

   

   

  (48) 

where the covariance terms are from 𝑃𝑃 as follows: 
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  (49) 

After adding the direction, the association probabilities of the DPDA becomes: 
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(50) 

Due to the fact that the base of the exponential function is greater than 1, it is an increasing 

function. Therefore, a larger −𝛥𝛥𝑞𝑞𝑇𝑇𝛿𝛿𝜙𝜙
−1𝛥𝛥𝑞𝑞

2
 represents a higher probability of allocation, while 

a larger −𝛥𝛥𝑞𝑞𝑇𝑇𝛿𝛿𝜙𝜙
−1𝛥𝛥𝑞𝑞

2
  represents a smaller direction difference. So smaller directional 

differences will be assigned a higher probability. 
Finally, the association probabilities are modeled as: 
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  (52) 

The innovation covariance and Kalman gain are respectively expressed by the following 
equation: 
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 2
2( ) ( | 1) T

LS l BP l l B Iσ= − +   (53) 
 1( ) ( | 1) ( )TK l P l l B S l−= −   (54) 

We make use of the association probabilities calculated above to get final state estimate 

𝑋𝑋
∧

(𝑙𝑙|𝑙𝑙) and covariance matrix 𝑃𝑃(𝑙𝑙|𝑙𝑙). 
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1
( | ) ( | 1) ( ) ( ) ( )

VN l

q q
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X l l X l l K l l lβ ν
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=

= − + ∑   (55) 

 0 0| ) ( ) ( | 1) (1 ( )) ( | ) ( )cP l l l P l l l P l l P lβ β= − + − +


（   (56) 
 4( | ) (I ( ) ( )) ( | 1)cP l l K l B l P l l= − −   (57) 
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  (58) 

 
( )

1
( ) ( ) ( )

vN l

q q
q

v l l lβ ν
=

= ∑   (59) 

4. Simulation and Experimental Results 

4.1 Simulation 
In this part, we conduct simulation experiments and the simulation results are analyzed. The 
trajectory and scene of the simulation experiment are shown in Fig. 3. Positioning 100 points 
and sampling interval is 0.5s.  We set the initial state and covariance matrix as  𝑋𝑋(0) =
[1𝑚𝑚 19.99𝑚𝑚 1 𝑚𝑚/𝑠𝑠 0.1 𝑚𝑚/𝑠𝑠]𝑇𝑇and 𝑃𝑃(0) = 𝐼𝐼4 respectively. The 𝑃𝑃𝐺𝐺  is 0.99, 𝑃𝑃𝑑𝑑 is 0.9. 
We randomly generate a number between 0 and 1 to simulate the NLOS environment. We 
compare the random number with the NLOS probability threshold to judge whether BN and 
the MN are in NLOS state. If the digit is less than NLOS probability threshold, this BN is in 
NLOS state. The NLOS errors comply with Gaussian distribution in simulation experiment. 
We compare IPF-DPDA with the MJPDA [27], RIMM [13], IMM-EKF [9], REKF [13] EKF 
[7]. 1000 Monte Carlo runs are used to get simulation results. And the good or bad of algorithm 
is estimated through the root mean square error (RMSE) and cumulative distribution function 
(CDF) of the average localization error. 
 

 2 2

1 1

1 1 ( ( ) ( )) ( ( ) ( ))
MC L

j j jj
j l

RMSE x l x l y l y l
MC L

∧ ∧

= =

 = − + − 
 

∑∑   (60) 

 
Where L = 100 and MC = 1000 represent the number of moving steps and the number of Monte 
Carlo simulation runs, respectively. (𝑥𝑥

∧
𝑗𝑗(𝑙𝑙),𝑦𝑦

∧
𝑗𝑗(𝑙𝑙))  is the position estimation and 

(𝑥𝑥𝑗𝑗(𝑙𝑙),𝑦𝑦𝑗𝑗(𝑙𝑙)) is the true location of MN during the  𝑗𝑗 − 𝑡𝑡ℎ Monte Carlo run. 
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   Fig. 3. Trajectory of MN 

 

Gaussian Distribution: We suppose that NLOS errors and measurement noise obeyed the 
Gaussian distribution 𝑁𝑁(𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2) and 𝑁𝑁(0,𝜎𝜎𝐿𝐿2) ,respectively. The specific parameter 
settings are shown are displayed in Table 1. When we do simulation experiments, one 
parameter changes while the other parameters remain unchanged, for the sake of observing the 
effect of this parameter on location accuracy of algorithm. 

 
Table 1. Default Parameters of Gaussian Distribution 

Parameter Symbol Values 
Quantity of BN M 6 

NLOS probability 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 0.5 
Gauge noise 𝑁𝑁(0,𝜎𝜎𝐿𝐿2)  𝑁𝑁(0, 12)  
NLOS error 𝑁𝑁(𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁,𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁2) 𝑁𝑁(5, 62)  

   
     Fig. 4. RMSE under various 𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁         Fig. 5. RMSE under various 𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 

 
Fig. 4 mirrors the transform when the 𝜇𝜇𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 raises from 1 to 7. The black curve represents 

my algorithm, it can be obviously seen that the location accuracy of IPF-DPDA is better. In 
more details, average positioning error of IPF-DPDA, MJPDA, RIMM, IMM-EKF, REKF and 
EKF are 2.017m, 2.776m, 2.936m, 3.081m 3.963m, and 4.043m respectively, and IPF-DPDA 
improves average location accuracy by 27.34%, 31.30%, 34.53%, 49.10% and 50.11% 
separately. 

Fig. 5 distinctly reflects the average localization errors an ascending tendency as 
𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁   increases. The average location accuracy of IPF-DPDA is 1.944m, while MJPDA, 
RIMM, IMM-EKF, REKF and EKF are 2.473m, 2.617m, 2.744m, 3.649m, 3.761m 
respectively. The IPF-DPDA raises average location accuracy by 21.39%, 25.72%, 29.15%, 
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47.85% and 48.31% respectively.  

   
Fig. 6. RMSE under various BN           Fig. 7. CDF of localization error 
 

With the BN raises in Fig. 6, the location accuracy of all algorithms has been improved. 
However, RIMM, IMM-EKF, REKF and EKF improve slowly, while IPF-DPDA and MJPDA 
improve faster than the previous four algorithms. In more details, the location accuracy of IPF-
DPDA, MJPDA, RIMM, IMM-EKF, REKF and EKF are 2.381m, 3.032m, 3.21m, 3.368m, 
4.401m, and 4.491m respectively. The IPF-DPDA raises average location accuracy by 21.47%, 
25.83%, 29.31%, 45.90% and 46.98% respectively. 

In Fig. 7, CDF reflects the positioning accuracy of my algorithm, the 90% localization error 
of IPF-DPDA, MJPDA, RIMM, IMM-EKF, REKF and EKF are less than 3.357 m, 3.863m, 
5.192m, 5.375m, 6.601m and 6.693m separately. 

4.2 Experiment 
Because the simulations experiment can’t fully explain the localization accuracy of the IPF-
DPDA, we designed a true experiment to verify it. The ultra-wideband (UWB) location has 
low transmission power and can realize accurate information exchange between equipment, 
so as to realize high-precision positioning. The UWB equipment used is displayed in Fig. 8 
and 9 in this paper. Fig. 8 shows the MN and power supply, Fig. 9 shows the BN. 
 

 
Fig. 8. MN and Power Supply               Fig. 9. BN 
 

The experiment is carried out in our laboratory, as shown in Fig. 10. The length of 
laboratory is 12.6 meters and the width is 6.6 meters. There are seven beacon nodes in the 
experimental scene, and the person moves along the trajectory. The blue and green positions 
are MN and BN respectively. Place MN and BNs 1.2m above the floor, for the sake of avoiding 
UWB signal reflecting from the floor. The initial state of MN is set to 𝑋𝑋(0) =
[1.8𝑚𝑚 6𝑚𝑚 0𝑚𝑚/𝑠𝑠 −0.6 𝑚𝑚/𝑠𝑠]𝑇𝑇 .The seven BNs are located at(x1 = 1.2m, y1 = 3.6m),
(x2 = 3.3m, y2 = 0.6m),    (x3 = 2.4m, y3 = 4.6m),               (x4 = 5.4m, y4 = 4.2m), 
(x5 = 9.1m, y5 = 1.2m),              (x6 = 9.6m, y6 = 3.6m),  and  (x7 = 11.4m, y7 = 5.2m) 
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respectively. We sampled a total of 30 points, with a 1-second interval between each sampling 
point. Obtain 20 values at each sampling point and take the average as the current distance 
measurement value. Other parameters remain unchanged, the same as the simulation. 

 
(a)                              (b) 

Fig. 10. (a) Real Scene of the Laboratory (b) Plan of Laboratory 
 

The error distribution of each sampling point and the CDF of positioning error are displayed 
in Fig. 11 and Fig. 12 separately.  

As can be observed from Fig. 11, the black curve represents my algorithm, the location 
accuracy of IPF-DPDA is the highest more than half of the sampling points. The positioning 
accuracy of IPF-DPDA, MJPDA, RIMM, IMM-EKF, REKF and EKF are 0.6647m, 0.7693m, 
0.8532m, 0.8442m, 0.8313m, and 0.8317m respectively on average. 

From Fig. 12, the CDF of each algorithm is shown when experiment in the laboratory. The 
light blue line is my algorithm, which is obviously better than other algorithms. In more detail, 
the 90% localization error of IPF-DPDA, MJPDA, RIMM, IMM-EKF, REKF and EKF are 
less than 1.105 m, 1.541, 1.577m. 1.709m, 1.837m and 1.701m separately.  

 

   
Fig. 11. Sampling point positioning error    Fig. 12. CDF of localization error 

5. Conclusion 
A location method based on improved particle filter and directional probability data 
association is proposed to track MN. Firstly, an improved particle filter is applied to reduce 
error of measuring distance. Then the hypothesis test is applied to detect whether 
measurements are in LOS situations or in NLOS situations for N different groups. If there are 
measurements in the validation gate, the corresponding association probabilities are applied to 
weight retained position estimate to gain the final location estimation. If the number of inside 
validation gate is 0, update with predicted state estimate. Simulation and experimental results 
display IPF-DPDA performance better than MJPDA, RIMM, IMM-EKF, REKF and EKF in 

0 5 10 15 20 25 30

Sample points

0

0.5

1

1.5

2

2.5

3

Lo
ca

liz
at

io
n 

er
ro

r(m
)

EKF

REKF

IMM-EKF

RIMM

MJPDA

IPF-DPDA

0 0.5 1 1.5 2 2.5

Localization Error(m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Empirical CDF

EKF

REKF

IMM-EKF

RIMM

MJPDA

IPF-DPDA



3160                                  Cheng et al.: An Indoor Localization Algorithm based on Improved Particle Filter  
and Directional Probabilistic Data Association for Wireless Sensor Network 

all aspects. The next work we need to do is to enhance the robustness of IPF-PDDA algorithm 
when NLOS error probability is large. 
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